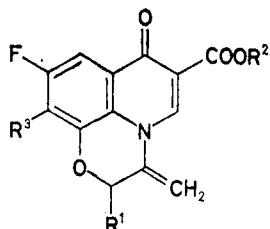
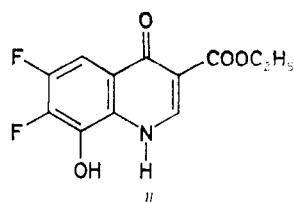
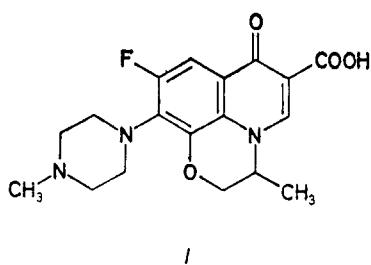
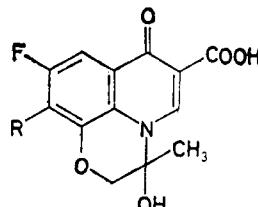


**PREPARATION OF SOME
2,3-DIHYDRO-7-OXO-7*H*-PYRIDO[1,2,3-*de*][1,4]BENZOXAZINE
DERIVATIVES**

Stanislav RÁDL, Jaroslav MOURAL and Radoslava BENDOVÁ




Research Institute for Pharmacy and Biochemistry, 130 60 Prague 3

Received May 3, 1991


Accepted June 11, 1991

In the last few years interest in analogs of ofloxacin (*I*) has considerably risen. We have recently described¹ a new reaction of 8-hydroxyquinolone *II* with 3-bromopropyne leading to 2,3-dihydro-3-methylene-7-oxo-7*H*-pyridol[1,2,3-*de*][1,4]benzoxazine-6-carboxylate *IIIa*, which could be used as an intermediate for preparation of antibacterically active compound *IIIb* (refs.^{1,2}).

Now we extend the scope of the reaction. Using 3-bromobutyne we obtained 2-methyl derivative *IIIc*. Treatment of *IIIc* with N-methylpiperazine followed by an

IIIa, R¹ = H, R² = C₂H₅; R³ = F
IIIb, R¹ = R² = H; R³ = 4-methylpiperazinyl
IIIc, R¹ = CH₃; R² = C₂H₅; R³ = F
IIId, R¹ = CH₃; R² = H; R³ = 4-methylpiperazinyl

IVa, R = F
IVb, R = 4-methylpiperazinyl

alkaline hydrolysis provided ofloxacin analog *IIId*. On the other hand we have found that an acidic hydrolysis of *IIIa* provided *IVa* having a tertiary hydroxy group at position 3. When we treated *IIIa* with N-methyl-piperazine and the intermediate *IIIb* subjected the acidic hydrolysis we obtained 3-hydroxy analog of ofloxacin *IVb*.

EXPERIMENTAL

The melting points were determined on a Mettler FP 5 apparatus and were not corrected. IR spectra were taken on a Unicam SP-2006 spectrometer in KBr pellets; wavenumbers are given in cm^{-1} . UV spectra were taken on a Unicam 8 800 spectrophotometer in ethanol, molar absorption coefficients (ϵ) are given in $\text{m}^2 \text{mol}^{-1}$, wavelengths (λ) in nm. Mass spectra were measured on MCH 1 320 and MAT 44 S spectrometers. ^1H NMR spectra (100 MHz) and ^{13}C NMR spectra (25·14 MHz) were measured on an apparatus BS-487 (Tesla Brno) 100 MHz in hexa-deuterated dimethylsulfoxide (^{13}C NMR at 100°C, unless otherwise stated). The standard for ^1H NMR spectra was 3-trimethylsilylpropanoic acid, unless otherwise stated, the ^{13}C NMR spectra were referenced to tetramethylsilane. Chemical shifts are given in ppm (δ -scale), coupling constants (J) in Hz.

Ethyl 9,10-Difluoro-2,3-dihydro-3-methylene-2-methyl-7-oxo-7*H*-pyridol[1,2,3-*de*][1,4]benzoxazine-6-carboxylate (*IIIc*)

A solution of 3-bromobutyne (0·73 g, 5·5 mmol) was added dropwise during 1 h to a mixture of *II* (1·35 g, 5 mmol), sodium hydrogen carbonate (0·63 g, 7·5 mmol) and N,N-dimethylformamide (15 ml) at 90°C and then the mixture was stirred at this temperature for additional 2 h. The mixture was cooled down and poured onto ice (200 g). The insoluble portion was filtered off, washed with water and dried. Crystallization from 95% aqueous ethanol provided 0·9 g (56%) of *IIIb*, m.p. 171–173°C. For $\text{C}_{16}\text{H}_{13}\text{F}_2\text{NO}_4$ (321·3) calculated: 59·81% C, 4·06% H, 11·83% F, 4·36% N; found: 59·52% C, 4·10% H, 11·42% F, 4·01% N. ^{13}C NMR spectrum: 13·67 q (CH_3 of ethyl), 16·65 q (CH_3), 59·9 t (CH_2 of ethyl), 71·84 t (C-2), 102·41 t ($\text{CH}_2=$), 103·16 d (C-8, $J_{\text{F},\text{C}} = 20$), 112·75 s (C-6), 122·60 s* (C-7a), 124·50 s* (C-11a), 134·53 s (C-3), 135·60 s (C-11), 140·00 s (C-10), 141·20 d (C-5), 148·20 s (C-9), 163·52 s (COO), 171·35 s (C-7). UV spectrum, λ_{max} ($\log \epsilon$): 330 (3·25), 250 (3·05), 229 (3·41).

9-Fluoro-2,3-dihydro-2-methyl-3-methylene-10-(4-methyl-1-piperazinyl)-7-oxo-7*H*-pyrido-[1,2,3-*de*][1,4]benzoxazine-6-carboxylic Acid (*IIId*)

A mixture of *IIIc* (0·6 g, 1·9 mmol), N-methylpiperazine (1 g, 10 mmol) and dimethyl sulfoxide (15 ml) was stirred at 110–120°C for 13 h. The solution was evaporated in vacuo, the residue was suspended in ethanol (90 ml) and a solution of sodium hydroxide (0·4 g, 10 mmol) in water (10 ml) was added dropwise and the mixture was stirred at 50°C for 30 min. The formed solution was evaporated, the residue was dissolved in water (10 ml), acidified with hydrochloric acid, treated with charcoal and neutralized with 5% aqueous solution of sodium hydrogen carbonate. The mixture was extracted with trichloromethane, dried with magnesium sulfate and the residue after evaporation was crystallized from 95% aqueous ethanol: yields 0·4 g (50%), m.p. 271–273°C. For $\text{C}_{19}\text{H}_{20}\text{FN}_3\text{O}_4 \cdot 2\cdot5\text{H}_2\text{O}$ (418·4) calculated: 54·54% C, 6·02% H, 4·54% F, 10·04% N; found: 54·56% C, 5·24% H, 4·58% F, 9·96% N. IR spectrum: 2 407 (OH), 1 719 (COOH), 1 660 ($\text{CH}_2=$), 1 617 (C=O). UV spectrum, λ_{max} ($\log \epsilon$): 336 (3·07), 299 (3·40), 244 (3·04), 220 (3·25).

¹H NMR spectrum (90°C): 1.65 d, 3 H (CH₃); 2.48 bt, 4 H (H-3', H-5', of piperazine); 2.84 s, 3 H (CH₃ of piperazine); 3.32 bt, 4 H (H-2', H-6' of piperazine); 5.14 m, 1 H (C-2); 5.54 d, 5.98 d, 2 H (CH₂==); 7.62 d, 1 H (H-8, *J*_{H,F} = 11); 8.90 s, 1 H (H-5). Mass spectrum, *m/z* = 373.

9,10-Difluoro-2,3-dihydro-3-hydroxy-3-methyl-7-oxo-7*H*-pyridol[1,2,3-*de*][1,4]benzoxazine-6-carboxylic Acid (*IVa*)

A suspension of *IIIa* (0.25 g, 0.8 mmol) in a mixture of concentrated hydrochloric acid (2 ml) and acetic acid (2 ml) was refluxed for 4 h. The mixture was cooled down and the separated crystals were filtered off and crystallized from N,N-dimethylformamide; yield 0.15 g (62%), m.p. 253–257°C. For C₁₃H₉F₂NO₅ (297.2) calculated 52.53% C, 3.05% H, 12.78% F, 4.71% N; found: 52.20% C, 3.15% H, 12.82% F, 4.49% N. IR spectrum: 3 180 (OH), 1 680 (COOH), 1 570, 1 520 (aromat. system). UV spectrum, λ_{max} (log ε): 317 (3.08), 232 (3.37). ¹H NMR spectrum (110°C): 1.76 s, 3 H (CH₃); 4.48 s, 2 H (C-2); 7.83 dd, 1 H (H-8, *J*_{H,F} = 1 000, 10); 9.10 s, 1 H (H-5). Mass spectrum, *m/z* = 297 (M⁺).

9-Fluoro-2,3-dihydro-3-hydroxy-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7*H*-pyrido[1,2,3-*de*][1,4]benzoxazine-6-carboxylic Acid (*IVb*)

A mixture of *IIIa* (1 g, 3.25 mmol), N-methylpiperazine (1 g, 10 mmol) and dimethyl sulfoxide (20 ml) was stirred at 110–120°C for 10 h. The solution was evaporated in vacuo, the residue was suspended in a mixture of 10% hydrochloric acid (10 ml) and acetic acid (10 ml) and the mixture was refluxed for 4 h. The mixture was evaporated to dryness, the residue was triturated with methanol (5 ml) and left to stand overnight in a refrigerator, insoluble portion was filtered off and crystallized from methanol; yield 0.4 g (28%), m.p. 251–253°C. For C₁₈H₂₀FN₃O₅ · HCl · H₂O (431.8) calculated: 50.06% C, 5.37% H, 8.21% Cl, 4.40% F, 9.73% N; found: 50.02% C, 5.03% H, 8.45% Cl, 4.79% F, 9.88% N. IR spectrum: 2 679 (OH), 1 682 (COOH), 1 618 (C=O). UV spectrum, λ_{max} (log ε): 297 (3.52). ¹³C NMR spectrum: 24.43 q (CH₃), 41.98 q (N—CH₃), 46.46 t, 46.61 t (C-2', C-6' of piperazine), 52.81 t (C-3', C-5' of piperazine), 70.81 t (C-2), 83.62 s (C-3), 103.19 d (C-8, *J*_{F,C} = 24), 106.67 s (C-6), 119.85 s (C-7a), 124.68 s (C-11a), 129.79 s (C-10), 139.90 s (C-11), 140.05 d (C-5), 154.57 s (C-9, *J*_{H,F} = 247), 165.23 s (COO), 175.94 s (C-7). Mass spectrum, *m/z* = 377.

REFERENCES

1. Rádl S., Kovářová L., Moural J., Bendová R.: Collect. Czech. Chem. Commun. 56, 1937 (1991).
2. Hoshino K., Sato K., Akahane K., Yoshida A., Hayakawa I., Sato M., Une T., Osada Y.: Antimicrob. Agents Chemother. 35, 309 (1991).

Translated by the author (S. R.).